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We introduce a population dynamics model, where individual genomes are represented by bit strings.
Selection is described by death probabilities which depend on these genomes, and new individuals continu-
ously replace the ones that die, keeping the population constant. An offspring has the same genome as its
(randomly chosen) parent, except for a small amount of(also random) mutations. Chance may thus generate a
newborn with a genome that is better than that of its parent, and the newborn will have a smaller death
probability. When this happens, this individual is a would-be founder of a new lineage. A new lineage is
considered created if the number of its live descendants grows above a certain previously defined threshold.
The time evolution of populations evolving under these rules is followed by computer simulations and the
probability densities of lineage duration and size, among others, are computed. These densities show a scale-
free behavior, in accordance with some conjectures in paleoevolution, and suggesting a simple mechanism as
explanation for the ubiquity of these power laws.
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I. INTRODUCTION

Biological evolution of species presents some universal
behavior due to its time and size scaleless character(see, for
instance,[1]). A parallel between this feature and critical
phenomena studied within statistical physics is straightfor-
ward, and indeed many techniques traditionally used by
physicists in this field were recently adopted also to study
evolution through simple computer models(see, for instance,
[2]). Two of the most important lessons physicists have
learned from critical phenomena are listed below.

Lesson 1. One cannot take only a small piece(or a small
time interval) of the system under study, including later the
rest of the system as a perturbation. Critical, scale-free sys-
tems resist this approach; because they are nonlinear, the
whole is not simply the sum of the parts. All scales of size
(and time) are equally important for the behavior of the
whole system. A would-be upper bound for size(or lifetime),
above which one can neglect the corresponding effects, does
not exist.

Lesson 2. The specific microscopic(or short term) details
of the system are not definitive to determine the behavior of
the whole system under a macroscopic(or long term) point
of view. In other words, systems which are completely dif-

ferent in their microscopic constituents(or short term evolu-
tion rules) can present the same critical, macroscopic behav-
ior. In particular, some universal critical exponents determine
a mathematical behavior that is shared by completely distinct
systems. Thus, one can indirectly study some aspects of a
complicated real system by observing the evolution of an
artificially invented toy model simulated on the computer.

There are many evidences for this scale-free behavior
within biological evolution. Among others, a famous ex-
ample is the classification of extinct genera according to their
lifetime, a long term study of fossil data performed by pale-
ontologists Sepkoski and Raup[3–5]. The frequency distri-
bution they found is compatible with a power-law decay with
exponent 2. The same exponent was confirmed by at least
two distinct theoretical computer models[6,7].

Branching processes in general also show scale-free be-
havior. In this case, an important class, with exponents mul-
tiples of 1/4, is ubiquitous. This interesting issue was studied
by West and collaborators; a recent overview can be found in
[8]. In particular, by studying blood transport networks, they
proposed a model based on three basic ingredients: a hierar-
chical branching pattern, where a vessel bifurcates into
smaller vessels and so on; a minimum cutoff size for the
smallest branches, which makes the branching mechanism a
finite process; and a free-energy minimization constraint.
From these three basic hypotheses, they were able to show
the emergence of the exponents 1/4, 1/2, 3/4, etc.[9–11].
Of course, not only blood vessel systems follow this general
framework, and the same class of exponents, multiples of
1/4, were indeed measured within many other contexts.

A particularly intriguing example is the so-called Kleiber
empirical law, discovered in 1932. It relates the metabolic
energetic powerP of an animal(mammal) with its massM
asP,M3/4. The validity of this relation goes down to single
isolated mammalian cells and even its isolated mitochondria,
covering 26 orders of magnitude[9]. Also, lifespan increases
as M1/4 for many organisms, while heart rate decreases as
M−1/4. Thus, the number of heartbeats during the whole life

*Permanent address: Instituto de Física, Universidade Federal
Fluminense, av. Litorânea s/n, Boa Viagem, Niterói 24210340, RJ,
Brazil. Electronic address: pmco@if.uff.bn

†Permanent address: Instituto de Física, Universidade Federal
Fluminense, av. Litorânea s/n, Boa Viagem, Niterói 24210340, RJ,
Brazil.

‡Permanent address: Institute for Theoretical Physics, Cologne
University, D-50923 Köln, Germany.

§Permanent address: Instituto de Física, Universidade Federal
Fluminense, av. Litorânea s/n, Boa Viagem, Niterói 24210340, RJ,
Brazil.

PHYSICAL REVIEW E 70, 051910(2004)

1539-3755/2004/70(5)/051910(8)/$22.50 ©2004 The American Physical Society70 051910-1



is invariant for all mammals. Similar scaling relations and
invariant quantities appear at the molecular level as well[9].

Here, we raise the idea that biological speciation could fit
very well into the general branching process framework de-
scribed by West. Why the idea of universality would apply to
evolutionary systems is an interesting and important concep-
tual question. Some hints toward a possible answer can be
seen in[12–15].

In the present work, in order to test this possible link
between biological speciation and West’s framework, we ad-
dress such a complicated problem, namely lineage branch-
ing, following the quoted toy model approach. Our hope is
that some of the quantities we can measure could have a
parallel in the real world, in particular the critical exponents.
In addition to the computer simulations from which we mea-
sure these quantities and their related critical exponents, we
were also able to relate them to each other. This further ana-
lytical treatment yields some scaling relations which are
completely satisfied by our simulational results. Further-
more, these relations allow us to predict the unknown values
of some exponents from the knowledge of others, an ap-
proach which could be very useful since only one such ex-
ponent was directly measured from fossil data, namely, the
Sepkoski and Raup work. First, we present the model, and
then the results of our computer simulations and analytical
approaches. Conclusions are at the end.

II. THE MODEL

Our population is kept constant, withP (typically 105 or
106) individuals representing a sample of a much larger set.
Each individual is characterized only by its genome, repre-
sented here by an array ofg bits (typically 32, 64, 128,…,
2048). Each bit can be either sets1 bitd or not s0 bitd. At the
beginning, all bits are zeroed, and all individuals belong to a
single lineage.

We count the total numberNi of bits set along the genome
of individual i: it will survive with probability xNi+1, which
decreases exponentially for increasing values ofNi, i.e., the
larger the number ofs1 bitsd along the genome, the larger is
the death probability of this particular individual. This is the
selection ingredient of our model. At each time step, a cer-
tain fractionb (typically 1% or 2%) of individuals die, each
one according to its own death probability, as the outcome of
intralineage competition.

At each time step, the simulation obtains the value ofx
first, before the death cycle, by solving the polynomial equa-
tion

o
i

xNi+1 = Ps1 − bd, s1d

where the sum runs over all living individuals. This require-
ment keeps the population constant. Equivalently, one can
solve

o
N

HsNdxN+1 = Ps1 − bd, s2d

where now the sum runs overN (0, 1, 2, …), and HsNd
counts the current number of individuals with precisely

N bits set along the genome. After computing the value ofx,
we scan the whole populationsi =1,2, . . . ,Pd, generating a
real random number between 0 and 1 for each individuali, in
order to compare it with its survival probability: if the ran-
dom number is larger thanxNi+1, individual i dies.

After each death, we choose another individual at random
to be the parent of a newborn. Its genome is copied, and
some random mutations are included at a fixed rate per bit
(typically 1/32) which does not depend on the genome
length. Each mutation flips the current bit state(from 0 to 1
or vice versa) at a position tossed along the genome. After all
mutations are performed, the newborn is included into the
population.

If the newborn presents fewers1 bitsd than its parent, it
receives the label of potential founder of a new lineage. Dur-
ing the time steps that follow, all its descendants will be
monitored: if, at some future time, the number of those de-
scendants still alive reaches a minimum thresholds0 (typi-
cally 10), then all descendants of the now confirmed founder,
including itself, are considered to belong to a new lineage.

On the other hand, extinction occurs when the last indi-
vidual of a given lineage dies. Although a rare event, a lin-
eage can also become extinct if all its individuals descend
from the same potential founder, being altogether transferred
to another, new, lineage, by reaching the thresholds0.

A similar model, but without the lineage branching step,
was already used by some of us[16].

III. RESULTS

We have run our program with some different sets of pa-
rametershP,s0,bj. The results are qualitatively the same in
all cases; thus we will present only results for populations
with P=105 individuals,b=2% of which die every year(im-
mediately replaced by newborns), requiring a minimum
threshold ofs0=10 living descendants of the same potential
founder in order to have a new lineage. The genome lengths
vary from g=32 up to g=2048. We have also studied an
alternate version of the model in which, instead of being
strictly constant, the population is allowed to fluctuate: first,
all individuals have the chance to generate offspring, accord-
ing to the rateb, increasing the population; after that, the
death roulette kills individuals according to the probability
1−xNi+1. No change is observed in what concerns the quan-
tities we measured below. Also, similar branching criteria
were introduced into the Penna model for biological aging
[17,2], for smaller genome lengthsg=8, 16, 32, and 64: the
general behavior did not change.

Figure 1 shows the number of living lineages as a func-
tion of time t. Each time step corresponds to a scan of the
whole population performing deaths and births. We divided
the number of living lineages by the constant number of
individuals, in order to show that one lineage indeed corre-
sponds to a considerable number of individuals(varying
from approximately 10 000, on average, for the largest ge-
nome length of 2048 bits, down to 50 individuals for the
smallest genome length of 32 bits). One can also observe
that the total number of generations we tested, after 106 time
steps, is large enough to get a stable, self-organized situation

de OLIVEIRA et al. PHYSICAL REVIEW E 70, 051910(2004)

051910-2



which is, indeed, very different from the starting point, with
a single lineage and completely clean genomes.

Over the last 100 000 time steps, after stabilization, we
have performed the average of the number of living lineages
for each genome length. The results are displayed in Fig. 2.
The exponent that figures in the plot was obtained from a fit
to the simulation data. For other runs, with different sets of
parameters, it remained the same. The relation between these
two quantities(number L of living lineages and genome
lengthg) follows a power law of the kind

L ~ g−b, b < 5/4. s3d

Here, we propose that the numerically determined valueb
=1.24 (error bar within the last digit) is in fact b=5/4, fall-

ing into the same family of simple multiples of 1/4, ubiqui-
tous among biological measurements of various kinds(see
[8–14,18] and references therein). As already quoted, West
and collaborators demonstrated the emergence of exponents
that are multiples of 1/4 based only on three fundamental
ingredients. Our lineage model shares the same ingredients,
namely,(1) a multiple hierarchical branching—in our case,
lineages born from others;(2) a size invariant limit for the
final branch—in our case, we require a fixed minimum popu-
lation s0 in order to have branching;(3) a free-energy mini-
mization process—in our case, the growing-entropy ten-
dency provided by the random mutations(in the direction of
randomizing the bits along the genome as time goes by) is
balanced by the selection mechanism(which gives prefer-

FIG. 1. Number of living lin-
eages, normalized by the popula-
tion, as a function of time, for dif-
ferent genome lengths.

FIG. 2. Number of living lin-
eages, normalized by the popula-
tion, averaged over the final 105

time steps of the simulation, as a
function of the genome length.
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ence to individuals with the smallest possible number of
1 bits).

Figure 3 illustrates this last ingredient. By counting the
number of 1 bits along each genome, the results are distrib-
uted far below half of the whole lengthg (which would be
the maximum-entropy situation), showing the efficiency of
the selection process. On the other hand, the nonvanishing
width observed in the same distributions shows a high degree
of genetic diversity preserved within the survivors, even
when the genome length is varied. Note that, with the excep-
tion of the three smallest genome lengths(symbols), all other
curves (small black dots) collapse into a single, genome-
length-independent one, within the figure scale.

Figure 4 shows the number of lineages which become
extinct each year, as a function of time. Extinction becomes
more difficult for larger genome lengths. Figure 5 shows the
total number N of extinct lineages, during the whole
106-time-step history, as a function of the genome length.
Again, we observe a power-law behavior according to the
general trend

N ~ g−g, g < 1. s4d

Figure 6 shows the distributions of extinct lineages as a
function of their sizes. One observes again a power-law be-
havior with exponent very close to 1(even for parameters
other than the ones used for this particular plot). The expo-

FIG. 3. Probability density dis-
tributions for N/g, where N
counts the number of 1 bits along
a genome of lengthg.

FIG. 4. Number of lineages
which become extinct per “year”
(one time step), averaged over in-
tervals of 103 time steps, as a
function of time.
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nents obtained from a fit to the data corresponding to the
largest genome lengths are shown. The position of the peak
does not change when the genome length is increased, in
agreement with our criterion for branching, namely, a fixed
minimum numbers0 of living individuals. Thus, in the limit
of large populations and large genome lengths, the probabil-
ity distribution of lineages sizePssd is expected to be

Pssd = HCs−l if sù s0, wherel < 1,

0 otherwise.
J s5d

The value ofl can be exactly 1 or slightly larger than 1, and
the constantC does not depend on the genome length.

The distribution of lineage lifetime, Fig. 7, is different. Its
peak position does depend on the genome lengthg. At the
same limit of large populations and large genome lengths, its
probability Ps,d reads

Ps,d = Hsa − 1df,0sgdga−1,−a if , ù ,0sgd, wherea < 2

0 otherwise
.

s6d

Again,a can be exactly 2 or slightly larger than 2. This value
is in complete agreement with the real exponent found by
paleontologists Sepkoski and Raup from fossil data. The
multiplicative constant in front of,−a can be easily obtained

FIG. 5. Total number of ex-
tinct lineages as a function of the
genome length.

FIG. 6. Distribution of extinct
lineages according to sizes (total
number of individuals which be-
longed to that lineage) for differ-
ent genome lengths.

SIMPLE BIT-STRING MODEL FOR LINEAGE BRANCHING PHYSICAL REVIEW E70, 051910(2004)

051910-5



by integrating Eq.(6) and equating the result to unity: for
a=2, it coincides with the minimum cutoff lifetime,0sgd
itself.

The dependence of,0 on g also follows a power-law be-
havior

,0 ~ g−d, d < 1/4, s7d

as can be seen, for instance, by plotting the peak positions on
Fig. 7 againstg. Alternatively, and with better accuracy, one
can plot the average lifetime againstg. The exponent we get
from this plot(not shown) is 0.26, for our simulational data.
Indeed, a simple reasoning can link the numberLsgd of liv-
ing lineages at a given time, Eq.(3), with the numberNsgd of
extinct lineages during the whole history, Eq.(4). The former
can be counted by adding the probability of each lineagej to
be alive at a given time, i.e., its lifetime, j divided by the
whole historical timeT,

Lsgd = o
j=1

Nsgd
, j

T
=

Nsgd
T
E
,0

T

d, ,Ps,d. s8d

Considering,0!T, we get

Lsgd ~ Nsgd,0sgd, s9d

and the consequent scaling relation

b = g + d s10d

which holds in general(apart from small logarithmic correc-
tions, if a=2). This relation is very well verified by our
numerical data.

The ratio 2:1 we found between the exponentsa and l
governing the two probability distributions for lineages(ac-
cording to their lifetime or size) has an interesting interpre-
tation. The growth of the number of lineages is not restricted
by the finite size of the whole population. Each lineage

grows by itself, reaches its maximum number of individuals,
and then shrinks to extinction due to its own genetic melt-
down. If the maximum number of living individuals belong-
ing to a lineage was somehow limited by an external source,
then this maximum would be kept for a long time, waiting
for the unavoidable genetic meltdown which eventually leads
to extinction: in this case, the relation between lineage sizes
and lifetime, would be linear. On the contrary, we obtain a
relation

s= Asgd,v, v < 2, s11d

in agreement with the ratioa /l<2 we got previously from
the lifetime and size distribution probabilities, separately. We
have measuredv independently, by accumulating anf, ,sg
histogram of all lineages, an example of which is shown in
Table I for a genome length of 64. Lineages live in a narrow
stripe of the spacef, ,sg, near the line defined by Eq.(11).
For all genome lengths,v is always very close to 2, accord-
ing to our simulational data.

By using the identityPssdds=Ps,dd,, one can also show
the further relation

s0 , Asgdf,0sgdgv or ,0sgd ~ fAsgdg−1/v, s12d

from which one can again(and independently) extract the
exponentd relatingb andg, through the proportionality con-
stantsAsgd, Eq. (11), provided by thef, ,sg histograms.

IV. CONCLUSIONS

We study a simple population dynamics model where the
genome of each individual is represented by a bit string. The
survival probability decreases with the number of 1 bits
along the individual’s genome. At each time step, a certain
fraction of individuals die according to these probabilities,
and are replaced by survival’s offspring. The genome of each

FIG. 7. Distribution of extinct
lineages according to lifetime,,
for different genome lengths.
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offspring is a copy of the parent’s, with a few random muta-
tions. Lineage branching occurs when an offspring happens
to have a genome better than its parent, provided its own
descendants succeed in growing up to surpass a threshold of
living individuals.

By simulating this simple model on a computer, we find
some general power-law relations which seem to be indepen-
dent of the particular parameters adopted in the simulations,
and also of modifications on the dynamic rules themselves.
One of these power laws, namely, Eq.(6) describing the
distribution of extinct lineages per lifetime, agrees with real
paleontological data[3–5], for which the exponenta<2 also
agrees with our numerically determined value. No real data
are available in order to compare the other exponents we
measured[Eqs.(3)–(5), (7), and(11)]. Nevertheless, we were
also able to obtain some analytical scaling relations between

these various exponents, all of them in agreement with our
numerical data. Moreover, within our narrow error bars, all
these exponents are multiples of 1/4, in complete agreement
with the general framework theoretically studied by Westet
al. [9–11] in a different context. These authors show the
emergence of exponents that are multiples of 1/4, which are
ubiquitous within biological systems, based only on three
very general assumptions also shared by our model. Thus,
we propose these exponents could be universal, valid for
other evolutionary systems more complicated than our toy
model.
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